Search results for "Latin hypercube sampling"
showing 7 items of 7 documents
Global sensitivity analysis in welding simulations -- what are the material data you really need ?
2011
In this paper, the sensitivity analysis methodology is applied to numerical welding simulation in order to rank the importance of input variables on the outputs of the code like distorsions or residual stresses. The numerical welding simulation uses the finite element method, with a thermal computation followed by a mechanical one. Classically, a local sensitivity analysis is performed, hence the validity of the results is limited to the neighbourhood of a nominal point, and cross effects cannot be detected. This study implements a global sensitivity analysis which allows to screen the whole material space of the steel family mechanical properties. A set of inputs of the mechanical model-ma…
Seismic evaluation of ordinary RC buildings retrofitted with externally bonded FRPs using a reliability-based approach
2020
International audience; Despite the extensive literature on reinforced concrete (RC) members retrofitted with fiberreinforced polymer (FRP) composites, few studies have employed a reliability-based approach to evaluate the seismic performance of RC buildings in terms of their collapse capacity and ductility. In this study, the performance of a poorly-confined RC building structure is investigated for different FRP retrofitting schemes using different configurations and combinations of wrapping and flange-bonded FRPs, as two well-established techniques. A nonlinear pushover analysis is then implemented with a computational reliability analysis based on Latin Hypercube Sampling (LHS) to deter…
A systematic approach for fine-tuning of fuzzy controllers applied to WWTPs
2010
A systematic approach for fine-tuning fuzzy controllers has been developed and evaluated for an aeration control system implemented in a WWTP. The challenge with the application of fuzzy controllers to WWTPs is simply that they contain many parameters, which need to be adjusted for different WWTP applications. To this end, a methodology based on model simulations is used that employs three statistical methods: (i) Monte-Carlo procedure: to find proper initial conditions, (ii) Identifiability analysis: to find an identifiable parameter subset of the fuzzy controller and (iii) minimization algorithm: to fine-tune the identifiable parameter subset of the controller. Indeed, the initial locatio…
Assessing the performance of GIS- based machine learning models with different accuracy measures for determining susceptibility to gully erosion
2019
Assessing the performance of GIS- based machine learning models withdifferent accuracy measures for determining susceptibility togully erosionYounes Garosia, Mohsen Sheklabadia,⁎, Christian Conoscentib, Hamid Reza Pourghasemic,d, Kristof Van Ooste,faFaculty of Agriculture, Department of Soil Science, Bu Ali Sina University, Ahmadi Roshan Avenue, 6517838695 Hamedan, IranbDepartment of Earth and Sea Sciences (DISTEM), University of Palermo, Via Archirafi22, 90123 Palermo, ItalycCollege of Marine Sciences and Engineering, Nanjing Normal University, Nanjing, 210023, ChinadDepartment of Natural Resources and Environmental Engineering, College of Agriculture, Shiraz University, Shiraz, IraneA- Fo…
The Lineshape of Inelastic Neutron Scattering in Relaxor Ferroelectrics
2005
We show that a microscopic reason for the steep drop of the optical phonon branch into an acoustic one (the so-called waterfall effect) in relaxor ferroelectrics may be the coupling of phonons with defects and impurities of different kinds, which is always present in relaxors. Namely, we do not specify the type of impurities but rather represent them as an ensemble of so-called two-level systems (TLS). This approach makes it possible to trace the evolution of the “waterfall” with temperature and the TLS concentration. To facilitate the planning of experiments on inelastic neutron scattering, we present a modification of the so-called Latin hypercube sampling method, which, based on some sig…
Latin hypercube sampling with inequality constraints
2010
International audience; In some studies requiring predictive and CPU-time consuming numerical models, the sampling design of the model input variables has to be chosen with caution. For this purpose, Latin hypercube sampling has a long history and has shown its robustness capabilities. In this paper we propose and discuss a new algorithm to build a Latin hypercube sample (LHS) taking into account inequality constraints between the sampled variables. This technique, called constrained Latin hypercube sampling (cLHS), consists in doing permutations on an initial LHS to honor the desired monotonic constraints. The relevance of this approach is shown on a real example concerning the numerical w…
SCOPE-Based Emulators for Fast Generation of Synthetic Canopy Reflectance and Sun-Induced Fluorescence Spectra
2017
Progress in advanced radiative transfer models (RTMs) led to an improved understanding of reflectance (R) and sun-induced chlorophyll fluorescence (SIF) emission throughout the leaf and canopy. Among advanced canopy RTMs that have been recently modified to deliver SIF spectral outputs are the energy balance model SCOPE and the 3D models DART and FLIGHT. The downside of these RTMs is that they are computationally expensive, which makes them impractical in routine processing, such as scene generation and retrieval applications. To bypass their computational burden, a computationally effective technique has been proposed by only using a limited number of model runs, called emulation. The idea …